THE JOURNAL OF Organic Chemistry[®]

VOLUME 46, NUMBER 22

0 Copyright 1981 by the American Chemical Society **OCTOBER 23,1981**

Acidities of the H-C Protons in Carboxylic Esters, Amides, and Nitriles

Frederick G. Bordwell* and Herbert E. Fried

Department of Chemistry, Northwestern University, Evanston, Illinois 60201

Received October 21, 1980

Equilibrium acidities in Me₂SO have been measured for a series of esters, GCH₂CO₂R, and a series of amides, $GCH₂CONR₂$, where G is $Me₃N⁺$, Ph, PhS, CN, CH₃CO, and 9-fluorenyl and $R = Me$, Et, or t-Bu. These data are compared with data for the corresponding nitriles, GCH₂C=N. The usual order of acidity found was GCH₂CN $>$ **GCH₂CO₂Et (** ΔpK_a **= 0.8-2) and GCH₂CO₂Et > GCH₂CONMe₂ (** ΔpK_a **= 3.9-4.5). Extrapolations from these** data place the pK_a of CH_3CO_2Et at about 30–31 and that of CH_3COMMe_2 at about 34–35, as compared to the (measured) value of 31.3 for CH₃CN. Measurements in Me₂SO and in H₂O for CH₂(CO₂Et)₂ and (CH₂(CN)₂ were used as a basis for estimating the pK_a values in water of CH₃CO₂Et["](27-28), CH₃CONMe₂ (31-32), and **CH3CN (31.5). These estimates range from 2 to 7 units higher than previous estimates.**

The relative acidities of the α -hydrogen atoms in carboxylic esters, amides, and nitriles dictate the relative ease with which these compounds undergo such important reactions as base-promoted metalation, racemization, alkylation, and acylation. Since these compounds are much weaker acids than water, it is impossible to measure their acidities in this solvent, and kinetic acidities have been used to estimate their equilibrium acidities. However, information concerning kinetic acidities is sparse and contradictory. The rate of hydroxide ion catalyzed deuterium exchange for the C-H bond in CH3CN is about twice that for the C-H bond in CH_3CONH_2 . By assuming the same $k^{\text{HO-}}/k^{\text{H}_2\text{O}}$ ratio (10¹⁰) for these compounds as for acetone, these rates were used to estimate the rates for water acting as a base, and equilibrium acidities in water were estimated from a plot of $k^{\text{H}_2\text{O}}$ vs. pK_a for a series of carbon acids including $CH_2(NO_2)_2$, $(CH_3CO)_2CHBr$, ${\rm (CH_3CO)_2CHMe},\,\,{\rm CH_3COCHEtCO_2Et},\,\,{\rm EtCH(CO_2Et)_2},\,\,$ $CH₃COCH₂Cl$, and $CH₃COCH₃¹$ In view of the diversity in structure of these carbon acids, the uncertainty in pK_s values for many of the acids, and the differences in steric effects at the reaction site, the size of the Brernsted coefficient derived from this plot can be considered to be no more than a rough estimate.² Since the $k^{H₂0}$ rates for the C-H acidities of $CH₃CN$ and $CH₃CONH₂$ are also rough estimates, it is questionable whether the pK_a values derived for these compounds are meaningful. (The same is true for CH_3CO_2Et for which a p K_a was given without a rate.) The pK, values of **24.5, 25,** and **25** for the C-H acidities of CH3C02Et, CH3CN, and CH3CONHz, respectively, **that**

Other kinetic and equilibrium acidity data do not support the near equivalence of α -C-H acidities for esters, amides, and nitriles. The rate of racemization of PhC*H- $(Me)CO₂-t-Bu-catalyzed by t-BuOK in t-BuOH$ hs been found to be about **lo4** greater than that for PhC*H(Me)- $CONF_{t_2}$ under the same conditions; the rate for the corresponding nitrile was too fast to measure under these conditions.⁴ These data suggest an acidity order of These data suggest an acidity order of this order needs to be accepted with caution since the relative rates may depend **as** much on the degree to which the intermediate carbanion is hydrogen bonded to t-BuOH as on its stability. 3 The same order is derived from equilibrium acidity data for substituted dinitroalkanes $GCH(NO₂)₂$ in aqueous solution; here the compounds where G is $\rm CN$, $\rm CO₂Me$, and $\rm CONH₂$ are reported to have pK_a values of -6.2 , 0.98, and 1.30, respectively.⁵ Interpretation of these data is difficult, however, since examination of molecular models indicates that steric inhibition of resonance in $GC(NO₂)₂$ anions is important and increases in the order $CN \leq \text{CONH}_2 \leq \text{CO}_2\text{Me}$. Also, as we will see later, hydrogen bonding may increase the acidity of the amide. $PhCH(R)CN$ > $PhCH(R)CO₂R$ > $PhCH(R)CONR₂$, but

On **the other** hand, it has been **reported that** CH3CH2CONEt2 incorporates up to **70%** of deuterium

were reported are certainly subject to large errors. Nevertheless, these "p $K_{\rm a}$ values" are frequently cited in the literature and have been generally accepted.³

⁽¹⁾ Pearson, R. G.; Dillon, R. L. *J. Am. Chem.* **SOC. 1953,** *75,* **2439-2443.**

⁽²⁾ Bell, R. P. "The Proton in Chemistry", 2nd *ed.;* **Comell University Press: Ithaca, NY, 1973.**

⁽³⁾ Cram, D. J. "Fundamentals of Carbanion Chemistry"; Academic

Press: New York, 1965.

(4) Cram. D. J.; Rickborn, B.; Kingsbury, C. A.; Haberfield, P. *J. Am.*
Chem. Soc. 1961, *83*, 3678–3687.

Reakts. Sposobn. Org. Soedin. **1970, 7, 50. (5) Tselinskii, I. V.; Kosmynina, A. S.; Dronov. V. N.; Shokhor, I. N.**

Table I. Carboxylic Ester, Nitrile, and Amide Acidities in Dimethyl Sulfoxide Solution at 25 °C^a

compd	indicator	$\mathbf{p}K_{\text{In}}$	$pK_a{}^b$	selected pK_a	
$[Me3NCH2CO2Et}+Cl-$	CNAH	18.9	19.9 ± 0.3^c		
	2NpANH	20.66	20.03	20.0	
$[Me3NCH,CONEt2]$ ⁺ Cl ⁻	TBuFH	24.35	24.90		
	TP2H	25.6	24.90	24.9	
$PhCH, CO, -t-Bu$	MFH	22.34	23.60		
	FH	22.6	23.60	23.6	
PhCH, CO, Et	MFH	22.34	22.57		
	FH	22.6	22.72	22.7 ^d	
PhCH, CONMe,	TP ₂ H	25.6	26.64		
	PXH	27.9	26.62	26.6	
PhSCH, CO, Me	2NpANH	20.66	21.3		
	TSXH	21.05	21.4		
	MFH	22.34	21.5	21.4	
PhSCH, CONMe,	MCLPXH	26.6	26.0		
	HB1	26.1	25.8	25.9	
9-CONH, FIH	NBY10	15.01	14.86		
	NBY13	14.1	14.80	14.8	
CH ₃ COCH ₂ CO ₂ Et	PSFH	15.4	14.37 ± 0.06		
	FMY33	13.8	14.14	14.2	
CH ₃ COCH ₂ CONMe ₂	ISFH	16.9	18.18		
	CNAH	18.9	18,18	18.2	
CNCH, CO, Me	ESO2FH	12.4	12.84		
	FMY3S31	11.87	12.74	12.8	
CNCH,CON(CH,)	ISFH	16.9	17.24		
	FMY3O	18.1	17.22	17.2	

^a Indicator and standard acid abbreviations: PMPXH, 9-(p-methoxyphenyl)xanthene; DDH, tetraphenylmethane; CNAH, 4-chloro-2-nitroaniline; 2-NpANH, 2-naphthylacetonitrile; TBuFH, 9-tert-butylfluorene; TP2H, 1,1,3-triphenylpropene; **4**-cmoro-z-mcroanume; z-npANn, z-napntnyiacetonitrile; TBur H, 9-tert-butyliluorene; TP2H, 1,1,3-triphenylpropene;
MFH, 9-methylfluorene; FH, fluorene; PXH, 9-phenylxanthene; TSXH, 9-(p-toluenesulfonyl)xanthene; MCLPXH, less, unless otherwise noted. ^c One-point titrations. d Lebedva, T. I.; Petrov, E. S.; Shatenshtein, A. I. Zh. Org. Khim. 1977, 13, 905 (p 829 in the English translation). These authors report 23.3, which is 0.1 unit lower than our value when corrected to an absolute scale.

from $CH₃OD$ under NaOMe catalysis in 1 h, whereas $CH₃CH₂CO₂Et$ fails to undergo exchange under these conditions.⁶ This suggests an opposite order of acidifying effects for the carboxamide and carboethoxy functions, i.e., $CO_2R < COMR_2$. This order is supported by the observation that $O_2NCH_2CONH_2$ is 0.57 pK_a unit more acidic than $O_2NCH_2CO_2Et$ in water, and this order is maintained also in the α -Cl and α -F derivatives.⁷

The development of an equilibrium acidity scale in Me₂SO has allowed quantitative measurements to be made for the first time on many very weak acids,⁸ including the α -C-H acidities of a number of carboxylic esters, amides, and nitriles. In this paper we present evidence to show that in Me₂SO solution the acidity order is usually $GCH_2CN > GCH_2CO_2R > GCH_2CONR_2$, where G is an acid-strengthening function.

Results

Equilibrium acidities in Me₂SO for the acids GCH_2CO_2R
and GCH_2CONR_2 , where G is Ph, PhS, CN, CH_3CO , PhCO, or 9-fluorenyl and R is Me, Et, or t-Bu, were measured by the method described previously⁸ (Table I). The anion conjugate bases of these compounds are stable under the conditions of the measurements, as indicated by constant absorbance readings. Attempts to measure the acidity of ethyl acetate $(\bar{G} = H)$ were frustrated, however, by rapid decreases in absorbance readings. The absorbance decreased slowly with tert-butyl acetate, allowing a pK_a of about 30 to be estimated from extrapolation of absorbance readings back to $t = 0$. Although the value is in the pK_a range expected, as will be brought out later, it is not possible to assign a pK_a value from these results.⁹

Measurement of the acidity of $[M_{2}NCH_{2}CO_{2}Et]$ ⁺Cl⁻ was also complicated by unstable absorbance readings. (This is not uncommon with quaternary ammonium salts.) Only one-point runs were possible with the indicator, 4chloro-2-nitrophenol, but agreement to within 0.2 pK_s unit was obtained by using 2-naphthylacetonitrile as an indicator, where two three-point titrations gave agreement at $pK_a = 20.0$.

The acidity measurements reported in Table I were made prior to the development of the methods for detecting and measuring the extent of ion pair formation.¹² The anions derived from $CH_3COCH_2CO_2Et$ and $CH_3COCH_2CONMe_2$ are expected to be chelated with K^+ , and the pK_a values recorded in Tables I and II may be too low by as much as 0.3 unit. Since the enolate ions derived from acetophenone and cyclohexanone are not ion paired,¹² we do not anticipate ion pairing with the anions derived

⁽⁶⁾ Matsuo, H.; Kawozoe, Y.; Sato, M.; Ohrishi, M.; Taksuno, T. Chem.
Pharm. Bull. 1967, 15, 391-398.
(7) Adolph, H. G.; Kamlet, M. J. J. Am. Soc. 1966, 88, 4761-4763.
(8) Matthews, W. S.; Bares, J. E.; Bartmess, J. E.; Bo

Cornforth, F. J.; Drucker, G. E.; Margolin, Z.; McCallum, R. J.; McCollum, G. J.; Vanier, N. R. J. Am. Chem. Soc. 1975, 97, 7006-7014.

⁽⁹⁾ The uncertainty introduced by the necessity to extrapolate the absorbance reading to $t = 0$ is compounded in this instance by the possibility that the absorbance drop may be caused in part by addition of the indicator anion, In-, to the carbonyl group of the ester. In THF, tert-butyl acetate is known to be deprotonated by LDA to form tert-butyl lithioacetate, which has half-life of about 2 h at $28 °C$.¹⁰ Similar behavior is likely in Me₂SO since proton transfers are known to be rapid in this medium, but addition of In" to the carbonyl group of ethyl benzoate is also very rapid.¹¹ (10) Woodbury, R. P.; Rathke, M. W. J. Org. Chem. 1977, 42,

^{1688-1690.}

⁽¹¹⁾ Ungermann, T. S., unpublished results.
(12) Olmstead, W. N.; Bordwell, F. G. J. Org. Chem. 1980, 45, 3299-3305.

Table 11. Comparison of CN, CO,R, and CONR, Acidifying Effeds in Various Carbon Acid Systems in Dimethyl Sulfoxide

acid	pK_a^a	$\Delta p K_a(I)^b$	$\Delta p K_a(U)^c$
PhCH, CN	21.9 ^d		
PhCH, CO, Et	22.7	0.8	
PhCH ₂ CONMe ₂	26.6		3.9
PhSCH, CN	20.8 ^e		
PhSCH ₂ CO ₂ Et	21.4	0.6	
PhSCH ₂ CONMe,	25.9		4.5
CNCH, CO, Et	13.1^{f}		
CNCH, CN	11.1 ^d	2.0	
$CNCH2CON(CH2)4$	17.1		4.0
PhCOCH, CN	10.2^{g}		
CH ₂ COCH ₂ CO ₂ Et	14.1	3.9	
$CH3COCH2CONMe2$	18.2		4.1
9-CN-F1H h	8.3		
9 -CO ₂ Me-FIH ^h	10.35^{d}	2.0	
9 -CONH, -FIH ^h	14.8		4.5
$[Me, NCH, CN]+Cl-$	20.6		
$[Me, NCH, CO, Et]+Cl-$	20.6	-0.6	
$[Me3NCH2CONEt2]$ ⁺ Cl ⁻	24.9		4.9

a This work (Table I) unless otherwise noted.

 $\Delta p_{\mathbf{A}}(I) = p_{\mathbf{A}}(GCH_2CO_1R) - p_{\mathbf{A}}(GCH_2CN).$

 $pK_a(II) = pK_a(GCH_2CO_1R) - pK_a(GCH_2CN)$.
 $pK_a(II) = pK_a(GCH_2CONR_2) - pK_a(GCH_2CO_2R)$. ^d Ref**erence 8.** ϵ Reference 16. *I* R. Press, unpublished results.
^g Reference 23. ^h FIH = fluorene.

from $PhCH_2CO_2R$ or $PhCH_2CONR_2$. Ion pairing is slight for the enolate ion derived from PhSCH₂COPh, even in NMP,13 so we do not expect ion pairing for the anions derived from PhSCH₂CO₂R or PhSCH₂CONR₂ in Me₂SO.

The C-H acidity of 9-carbamoylfluorene **(1)** was determined without complication from concurrent ionization of the N-H site, which should have a pK_a about 9 units higher. The carbanion was generated in the presence of 1-2 equiv of the standard acid anion, PhSCHSO₂Ph⁻ (pK_a = 20.34), to avoid possible dianion formation. The resulting visible spectrum of this slightly fluorescent, yellow-green anion **(2A)** displayed a peak at **423** nm and a

3A

shoulder at **449** nm. Upon addition of excess $CH₃SOCH₂-K⁺$ to the cuvette, the spectrum changed drastically, suggesting formation of dianion **3A,** strong peaks developing at **515,486, 452,** and **425** nm.

Discussion

 α -C-H Acidifying Effects of CO₂R, CN, and CONR₂ **Functions.** The data in Table **I** show that the acidity of $GCH₂CO₂R$ esters depends to some extent on the nature of R. Thus, $CNCH₂CO₂Me$ is 0.3 pK_a unit more acidic than $\mathrm{PhCH_{2}CO_{2}}\text{-}t\text{-}Bu$. This decrease in acidity of $\alpha\text{-}C\text{-}H$ with an increase in the size and/or branching in R is in

(13) Bordwell, F. G.; Branca, J. **C.; Hughes, D. L.; Olmstead, W. N.** *J. Org. Chem.* **1980,45,3305-3313.**

line with greater inductive electron release and/or steric hindrance to solvation in the $GCHCO₂R$ anion.

Examination of Table II shows that esters, $GCH₂CO₂R$, with $R = Me$ or Et, are less acidic than nitriles, $GCH₂CN$. $by 0.6-1.0 pK_a$ units for $G = Ph$, PhS, or CN. (Effects with $G = RCO$, 9-fluorenyl, and $Me₃N⁺$ will be discussed in a later section.) If a similar difference is assumed between the parent compounds, $CH₃CO₂Et$ and $CH₃CN$, this would place the pK_a of ethyl acetate at about $32-33$ (CH₃CN has a pK_a of 31.3 in Me₂SO). There is reason to believe, however, that substitution of G for a hydrogen atom will have a larger effect in CH_3CN than in CH_3CO_2Et because of the resonance saturation effect.¹⁴ The size of the saturation effect will be determined by the relative charge densities on carbon in the ⁻CH₂CN and ⁻CH₂CO₂Et anions, which will be related to the extent of delocalization into the CN and CO₂Et functions. The Taft $\sigma_1/\sigma_{\rm R}$ - ratio for CN is **0.56/0.33** = **1.7, as** compared to **0.30/0.34** = **0.88** for C02R.1s **These** numbers indicate resonance saturation will be much greater for $CO₂Et$ than for CN, and that $COCH₃$, for which $\sigma_{I}/\sigma_{R^-} = 0.28/0.47 = 0.60$, is a better model than CN for extrapolations. The Ph and PhS acidifying effects on CH3COCH3 are **7.2** and **8.3** pKa units, respectively.16 Addition of these numbers to the pK_a values of PhCH₂CO₂Et and PhSCH₂CO₂Et, respectively, gives 29.9 and 29.7 as an estimate of the pK_a of CH_3CO_2Et . We conclude that the pK_a of CH_3CO_2Et in $Me₂SO$ is about **30-3 1.**

Examination of Table I1 shows that carboxamides, $GCH₂CONF₂$, with $G = Ph$, PhS, or CN, are less acidic than the corresponding carboxylic esters by about **4** pK, units in Me₂SO. This would place the p K_a of N,N-dimethylacetamide at about **34-35,** which is in reasonable agreement with the pK_a of 35 for N -methylpyrrolidin-2-one *(NMP)* estimated by another method.13 The data indicate that ΔG° for eq 1 is about -7 kcal/mol.

The position of eq **1** is determined by polar and/or resonance factors. The polar factor could be appreciable, judging from the large difference in σ_I values for OMe **(0.27)** and NMez **(0.06).** Conjugative interactions in both the undissociated acids and in the anions could play a role but are difficult to evaluate. If the relative order and magnitude of resonance energies (RE) for $CH₃CO₂R$ and $CH₃CONR₂$ remain the same in their conjugate bases, the position of eq **1** will not be affected by resonance. It seems likely that the relative RE's of the (less stable) anions will exert the controlling factor, but neither these nor the relative RE's of the undissociated acids have been firmly established. Data from heats of combustion indicate that RE'S for amides and esters are comparable in size **(16-18** for EtOAc; 16-17 for CH₃CONH₂), but the data are subject to many uncertainties.^{17a} A similar conclusion has been

⁽¹⁴⁾ Bordwell, F. *G.;* **McCollum, G.** J. *J. Org. Chem.* **1976, 41, 2391-2395. Algrii, D.; Bares,** J. **E.; Branca,** J. **C.; Bordwell, F.** *G. Ibid.* **1978,43,5025-5026.**

⁽¹⁵⁾ Ehrenson, S.; Brownlee, R. T. C.; Taft, R. *W. hog. Phys. Org. Chem.* **1973,10, 1-78.**

⁽¹⁶⁾ (a) Bordwell, F. *G.;* **Bares,** J. **E.; Bartmess,** J. **E.; McCollum,** *G.* J.; Van Der Puy, M.; Vanier, N. R.; Matthews, W. S. *J. Org. Chem.* 1977,
42, 321–325. (b) Bordwell, F. G.; Bares, J. E.; Bartmess, J. E.; Drucker, *G.* **E.; Gerhold,** J.; **McCollum,** *G.* **J.; Van Der Puy, M.; Vanier, N. R.; Matthew, W. S.** *Ibid.* **1977, 42, 326-332.**

derived recently by relating ΔG_{deloc} to barriers of rotation.^{17b} Application of Benson's group additivities¹⁸ indicate that ΔG° for eq 2 favors the ester by 2.4 kcal/mol.

$$
\mathrm{CH_{3}CONHCH_{2}CH_{2}OCH_{3}}\rightleftarrows \mathrm{CH_{3}CO_{2}CH_{2}CH_{2}NHCH_{3}} \tag{2}
$$

A similar thermochemical analysis based on model compounds also indicates that the ester function has the larger RE by 2.4 kcal/mol. 19

The equilibrium acidity order $PhCH₂CN$ > $PhCH_2CO_2Et$ > $PhCH_2CONMe_2$ in Me₂SO (Table II) is the same as that observed for the kinetic acidities in *t-*BuOH for PhCH(Me)CN, PhCH(Me)CO₂-t-Bu, and $\text{PhCH}(M_{e})\text{CONEt}_{2}^{4}$ and for the equilibrium acidities in water for $\rm (NO_2)_2CHCN,$ $\rm (NO_2)_2CHCO_2Me,$ and $\rm (NO_2)_2C-$ HCONH₂.⁵ The $\Delta pK_a(I)$ of 7 for $(NO_2)_2CHCN$ vs. $(NO₂)₂CHCO₂Me⁵$ is, however, much larger than any recorded in Table II. (Compare, for example, the $\Delta p\ddot{K}_s(I)$ of 1.7 for $CNCH_2CN$ vs. $CNCH_2CO_2Me$.) Also, the $\Delta pK_a(II)$ for $(NO_2)_2$ CHCO₂Me vs. $(NO_2)_2$ CHCONH₂ of 0.3 is much smaller than the average $\Delta pK_a(II)$ of 4.3 derived from the data in Table 11. The latter is consistent with $\Delta pK_2(II)$ of -0.57 for $NO_2CH_2CO_2Et$ vs. $NO_2CH_2CONH_2$.⁷ It seems likely that the relatively high acidity of $(NO₂)₂$ -CHCN is associated with the high polarity and low steric demands of the CN group, and that the relatively high acidity of $(NO₂)₂CHCONH₂$ and $NO₂CH₂CONH₂$ is associated with intramolecular hydrogen bonding between CONH₂ and $=$ NO₂⁻. This hydrogen bonding, which is illustrated in eq 3, would amount to about 7 kcal/mol. These hydrogen bonding effects are, of course, absent in amides of the type GCH_2CONR_2 .

Acidities of GCH₂CO₂R, GCH₂CN, and $GCH₂CONR₂$, with $G = RCO$, 9-Fluorenyl, and $Me₃N⁺$. The acidifying effects of RCO, fluorenyl, and $Me₃N⁺$ groups are subject to steric and other factors to a much greater extent than is true for Ph, PhS, and CN groups. About 1 pK_a unit of the 3.9 unit greater acidity of $PhCOCH_2CN$ than $CH_3COCH_2CO_2Et$ is due to the inductive effect of Ph vs. CH₃. Ion pairing of the type shown in eq 4 tends to increase the apparent acidity of the ester, but the pK_a value has been corrected for this effect.¹²

The 2.0 pK_a unit greater acidity of 9-cyanofluorene (9-CN-FIH) relative to 9 -CO₂Me-FIH is due, at least in part, to the lesser steric demands of the linear $C=$ N function. Steric inhibition of resonance in the carbanion must act to decrease the acidities of both $9\text{-}CO₂Me\text{-}FH$ and 9-

Bowers, M. T., *Ed;* Academic Press: New York, **1979;** Chapter **11.**

(22) *Beilstein, 4th ed.* **1978, 9, 437. (23)** Bordwell, F. **G.;** Van Der Puy, M.; Vanier, N. R. J. Org. *Chem.* **1976, 41, 1883-1885.**

 $\text{CONH}_2\text{-}\text{FlH}$. These steric effects, together with the highly delocalized nature of the fluorenyl anion must serve to minimize the σ_R effects of the CO_2 Me and $CONH_2$ functions in these molecules. The fact that $\Delta pK_a(II)$ is large in this instance (4.5) supports the conclusion that its size is dictated primarily by the difference in polar effects of OMe and NH₂.

The acidity data for $[Me₃NCH₂CO₂Et]⁺$, $[Me₃NCH₂CN]⁺$, and $[Me₃NCH₂CONE_b]⁺$ are less reliable than the other pK_s values because of instability of their conjugate bases (ylides). The $\Delta pK_{\rm g}(I)$ and $\Delta pK_{\rm g}(II)$ values obtained are, however, in reasonable agreement with the results obtained with other functions. We note that the acidifying effect of $Me₃N⁺$, which is caused primarily, if not completely, by a polar effect $(\sigma_I = 0.65 \text{ in } \text{Me}_2\text{SO}^{20})$, is slightly greater than that of Ph, which operates principally by a resonance effect $(\sigma_I = 0.10)$, and slightly greater than that of PhS where a polarizability effect may be dominant ($\sigma_{\rm I} \simeq 0.30$). The effect of Me₃N⁺ is smaller by about 10 pK_a units than that of CN, which has a slightly smaller polar effect $(\sigma_1 = 0.56)$. The large resonance effects of RCO and 9-fluorenyl **also** leads to much larger acidifying effects for these functions, relative to $Me₃N⁺$.

Medium Effects on Nitrile, Ester, and Amide Acidities. Direct comparisons between acidities in H_2O and Me₂SO are available for malononitrile ($pK_a = 11.1$ in both H_2O and $Me₂SO$) and for diethyl malonate (p $K_a =$ 13.3 in H_2O^1 and 16.4 in $Me₂SO¹²$). When corrected to an absolute scale by subtracting log $(55/14)$ from ΔpK_a ,¹³ $CH_2(CN)_2$ is 0.6 pK_a unit less acidic in H_2O than in Me₂SO, and $CH_2(CO_2Et)_2$ is 2.5 p K_a units more acidic in H_2O . The latter is a minimum value since ion pairing in the $\overline{C}H$ - $(CO_2Et)_2$ anion introduces a conformational effect. We conclude that acetonitrile is likely to be slightly less acidic in H_2O than in Me₂SO and that CH_2CO_2Et and $CH₃CONMe₂$ are likely to be about 3 p K_a units more acidic in H₂O. This places the pK_a values in H₂O at \sim 31.5 for CH₃CN, \sim 27-28 for CH₃CO₂Et, and \sim 31-32 for $CH₃CONMe₂$. These are from 2 to 7 p K_a units higher than those estimated earlier.¹

In the gas-phase $CH_3CO_2CH_3$ is more acidic than $CH₃CN$ by 1.1 kcal/mol, and $CH₃CO₂CH₃$ is more acidic than CH_3CONMe_2 by 2.5 kcal/mol.²¹ (For the ester and amide the standard deviations for the measurements are $±4$ kcal/mol.)

Experimental Section

Instruments and Analyses. 'H nuclear magnetic resonance (NMR) spectra were measured on a Varian T60 or on a Hitachi Perkin-Elmer R20B instrument in deuteriochloroform solution (unless otherwise indicated) with tetramethylsilane as an internal standard. Infrared (IR) spectra were recorded on a Beckman IR-5 or on a Beckman 283 spectrophotometer.

Analytical vapor-phase chromatography (VPC) was performed on a Hewlett-Packard FM5752A gas chromatograph equipped with a thermal-conductivity detector. Analyses were generally performed by using a 0.25 in. by 10 ft aluminum column packed with **3%** Carbowax on acid-washed Chromasorb **W** (Varian Aerograph). Other columns used included a 0.25 in. by 9 ft column packed with **5%** Carbowax on acid-washed Chromasorb **W,** a 0.25 in. by 10 ft column packed with 2% FFAP on acid-washed

⁽¹⁷⁾ (a) Wheland, G. W. "Resonance in Organic Chemistry"; Wiley: New York, **1955;** pp **98-110.** (b) Fastrez, **J.** *J. Am. Chem. SOC.* **1977,99, 7004-7013.**

⁽¹⁸⁾ Benson, **S.** W. "Thermochemical Kinetics", 2nd ed.; Wiley: New York, **1976.**

⁽¹⁹⁾ Liebman, **J. F.;** Greenberg, A. *Biophys. Chem.* **1974,1,222-226.** *(20)* Branca, **J.** C. Ph.D. Dissertation, Northwestern University, **1979. (21)** Bartmess, **J. E.;** McIver, R. T. In "Gas Phase Ion Chemistry";

Chromasorb **W,** and a 0.25 in. by 6 ft column of 10% SE-30 on acid-washed Chromasorb **W.**

Melting points were determined on a Thomas-Hoover capillary melting point apparatus and are uncorrected.

Materials and Syntheses, General Data. All reagents were commercially available reagent grade chemicals unless otherwise noted. Purity of pK_a samples was ascertained by VPC, thin-layer chromatography (TLC; on Eastman Chromagram sheets No. 13181, silica gel with fluorescent indicator), HPLC, NMR, IR, and melting and boiling point, whenever applicable. Thick-layer chromatography was performed by Quantum Industries Quanta/Gram PQ6F or PQ5F plates.

Ethyl Phenylacetate. A commercial sample (Matheson Chemical Co.) was distilled under vacuum [75 $^{\circ}$ C (1.5 mm)] and found pure by VPC.

N,N-Dimethyl-a-phenylacetamide was prepared from phenylacetyl chloride, and a crystallization from hexane was repeated until no further change in melting point was observed: white needles mp 38-40 °C (lit.²² mp 43.5 °C); NMR δ 2.92 (6 H, s, N(CH₃)₂), 3.65 (2 H, s, PhCH₂), 7.15 (5 H, s, Ar).

Methyl Cyanoacetate. **A** commercial sample (Matheson Chemical Co.) was vacuum distilled [85 $^{\circ}$ C (\sim 5.5 mm)] and found to be pure by VPC.

1-(Cyanoacety1)pyrrolidine. A commercially available sample from Parish Chemical Co. was found to be pure enough for the pK, measurement.

9-Carboxamidofluorene. A sample to 9-fluorenecarboxylic acid generously provided by Professor R. T. Arnold was converted to the amide by using thionyl chloride and a concentrated ammonium hydroxide solution. Multiple recrystallizations from absolute ethanol gave pure white needles: mp 255-256 "C (lit. mp 251 °C); NMR (Me₂SO-d₆) δ 4.54 (1 H, s), 6.9–7.7 (8 H, m).

tert-Butyl Acetate. A commercially available sample (Matheson) was distilled through a 15-cm Vigreux column at atmospheric pressure: bp 95.5 °C; pure by VPC.

N,N-Dimethylacetylacetamide. A commerical sample (Parish Chemical Co.) was vacuum distilled: bp 93 °C (3.8 mm); pure by VPC.

tert-Butyl phenylacetate was prepared from phenylacetyl chloride and tert-butyl alcohol. Kugelrohr distillation $[80 °C(1$ mm)] gave the pure product [lit. bp 110 $^{\circ}$ C (15 mm)]: NMR δ 1.41 (9 H, s, $C(\overline{CH}_3)_3$, 3.51 (2 H, s, PhCH₂), 7.28 and 7.35 (5 H, 2 **e).**

Ethyl **(trimethy1ammonio)acetate** (chloride salt) was prepared from chloroacetate and anhydrous trimethylamine in ethanol. The white solid was recrystallized twice from acetonitrile and dried under vacuum $[100 °C (1.5 mm)]$ for 30 h: mp 151-153

°C; NMR (D₂O) δ 3.27 (9 H, s, N(CH₃)₃), 1.30 (3 H, t, CH₂CH₃), 4.22 (2 H, s, Me₃NCH₂⁺), 4.21 (2 H, q, CH₂CH₃).

 N , N -Dimethyl- α -(trimethylammonio)acetamide (chloride salt) was prepared from chloroacetic acid, thionyl chloride, and diethylamine in benzene.

The oily amide was added directly to a solution of trimethylamine in absolute ethanol, and the solution **was** refluxed for 6 h, cooled to room temperature, and concentrated in vacuo to yield a brown water-soluble solid. Recrystallization of the product from ethyl acetate/ethanol followed by repeated trituration with hot ethyl acetate afforded a white, granular solid. The product dried in a drying pistol (100 $^{\circ}$ C, 36 h) under vacuum, melted at 214.5-16.0 °C (with evolution of gas): NMR (D_2O) δ 1.20 (2 t, 6 H), 3.24 **(8,** 2 H), 3.44 (s, 9 H), 3.44 (m, 4 H).

Ethyl phenylthioacetate and N , N -dimethylphenylthioacetamide were prepared by standard procedures from phenylthioacetic acid (Parish Chemical Co.).

Equilibrium acidity measurements were carried out by the method described earlier.^{8,12} As pointed out by the referees, it is possible that addition to the carbonyl functions in these compounds may complicate the measurements. Addition of the 9 phenylxanthenyl carbanion to the carbonyl group of benzophenone or ethyl benzoate occurs rapidly, but the equilibrium concentration were used in the p K_a measurements reported in Table I.¹¹ For **this** reason, and because of the internal consistency of the resulta, we do not believe that carbonyl addition competes appreciably with the equilibrium deprotonation of esters or ketones in the pK, range below 25.

Acknowledgment. We are grateful to the National Science Foundation for support of this investigation. We thank Timothy Ungermann for measurements of the acidities of $PhSCH_2CO_2Me$ and $PhSCH_2CONMe_2$ and acknowledge a generous **gift** of dimethyl sulfoxide from the Chemical Products Division of Crown Zellerbach.

Registry **No.** Phenylacetyl chloride, 103-80-0; 9-fluorenecarboxylic acid, 1989-33-9; N,N-diethylacetamide, 685-91-6; $[Me₃NCH₂CO₂Et]⁺Cl⁻$, 3032-11-9; $[Me₃NCH₂CONEt₂]⁺Cl⁻$, 69371- $PhCH_2CONMe_2$, 18925-69-4; $PhSCH_2CO_2Me$, 17277-58-6; $PhSCH_2CONMe_2$, 78698-19-8; 9-CONH₂-FlH, 7471-95-6; $CH_3COCH_2CO_2Et$, 141-97-9; $CH_3COCH_2CONMe_2$, 2044-64-6; $CNCH_2CO_2Me$, 105-34-0; $CNCH_2CON(CH_2)_4$, 14227-95-3; $PhSCH_2CO_2$ Et, 7605-25-6; 9-CO₂Me-F1H, 3002-30-0. 33-1; PhCH₂CO₂-t-Bu, 16537-09-0; PhCH₂CO₂Et, 101-97-3;

Deaminative Rearrangements of 1-Phenylthio- and 1-Oxy-Substituted Chrysanthemylamines

Christopher K. VanCantfort¹ and Robert M. Coates*

Department *of* Chemistry, Uniuersity *of* Illinois, Urbana, Illinois 61801

Receiued March 19, 1981

Metalation of chrysanthemic nitrile **1** with lithium diisopropylamide followed by sulfenylation with diphenyl disulfide or oxygenation with a molybdenum peroxide complex gave chrysanthemic nitrile derivatives bearing phenylthio **(3** and **4)** or hydroxyl **(6)** substituents at C-1. These compounds provided access to the following *series* of 1-substitued chrysanthemylamiies: **1-(pheny1thio)chrysanthemylamine (5),l-methoxychrysanthemylamine (8), 1-methoxydihydrochrysanthemylamine (lo),** and the N-nitrosooxazolidinone **(13)** derived from 1-hydroxychrysanthemylamine **(11).** Nitrous acid deamination of **5** and **8** and hydrolytic deamination of **13** gave acyclic alcohols **(14,17,** and **18)** related in structure to yomogi alcohol **as major** products by cleavage of the 1-3 cyclopropane ring bond. Products formed by cleavage of the 1-2 cyclopropane ring bond **(15** and **24)** and related in structure to santolinatriene were obtained in lesser amounts from the deamination of **5** and **13.** Pinacol-type ring expansion to the isomeric cyclobutanones **19** and **20** was observed as a minor reaction pathway in the deaminations of **8** and **13.** In contrast, deamination of **10** gave dihydrocyclobutanones **21** and **22** as the major isolated products.

The heterolytic reactions of chrysanthemol derivatives have been studied extensively in recent years as a model

reaction for the biogenesis of acyclic terpenoids **and as an** interesting substrate for investigation of cyclopropyl car-